

2020 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY
SYMPOSIUM

CROSS-CUTTING M&S CAPABILITIES TECHNICAL SESSION
AUGUST 11-13, 2020 - NOVI, MICHIGAN

TRAINING ROBUST ANOMALY DETECTION USING ML-ENHANCED
SIMULATIONS

Philip Feldman, PhD

ASRC Federal, Beltsville, MD

ABSTRACT

This paper describes the use of neural networks to enhance simulations for
subsequent training of anomaly-detection systems. Simulations can provide edge
conditions for anomaly detection which may be sparse or non-existent in real-
world data. Simulations suffer, however, by producing data that is “too clean”
resulting in anomaly detection systems that cannot transition from simulated data
to actual conditions. Our approach enhances simulations using neural networks
trained on real-world data to create outputs that are more realistic and variable
than traditional simulations.

Citation: P.Feldman, “Training robust anomaly detection using ML-Enhanced simulations”, In Proceedings
of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 11-
13, 2020.

1. INTRODUCTION

Creating autonomous vehicles that can perform
optimally in unusual circumstances is a difficult
problem in machine learning (ML). The reason for
this is that most data is collected from systems
functioning normally. For example, it is relatively
straightforward to create a training set of typical
rush hour traffic by simply equipping cars with
cameras and driving them around in cities known
to have traffic problems. But this is only a partial
solution. In major evacuations, such as those for

hurricanes, traffic is often directed to use all avail-
able lanes. A self-driving car that is not trained for
that possibility can be expected to behave in
unpredictable ways. A neural network can easily
“learn” to ignore such corner cases. For example,
a network can be trained to drive one mile with
perfect (99.9998%) accuracy if it assumes accidents
simply do not happen [1].

This also happens with ML-based anomaly de-
tection and response systems. The vast number of
vehicles, from automobiles to satellites behave
nominally for the vast majority of their functional

Proceedings of the 2019 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Training robust anomaly detection using ML-Enhanced simulations, P. Feldman Page 2 of 8

lifespan. Training for degraded modes requires vast
amount of data being collected in a large number of
malfunctioning states. Often, this data does not exist
in sufficient quantity, and would be expensive to
produce. One can imagine the paperwork required
to slowly and rigorously destroy a collection of
multi-million-dollar vehicles simply to train their
diagnostic systems.

An effective solution to this problem is to use
simulations [2], [3], [4]. Using synthetic data allows
neural networks to be trained on edge cases in
sufficient quantity such that the ML system can’t
develop undesirable biases. However, such simu-
lations are often “too easy” for ML systems to
understand, and fail in real world deployments [5].

 To address this issue, we propose the use of
machine learning to enhance the outputs of sim-
ple simulations, making them perform similarly to
much more sophisticated simulators. In our current
work with satellite anomaly detection for NASA
and NOAA this technique is being developed to
create realistic simulations for anomaly detection
and classification, but we believe that it is broadly
applicable. Briefly, the approach is as follows:

1) A simulator is constructed that approxi-
mately mimics the behavior of the target
vehicle. This simulation can be quite
coarse - for example a square wave can b e
used for nearly any periodic waveform,
such the rotation of a wheel. This model
does not have to include all systems on the
target vehicle.

2) Data, either recorded from operational ve-
hicles or from sophisticated, real-time sim-
ulators, is gathered in the course of normal
operations. This data represents baseline
behavior

3) The simple simulator is configured to gen-
erate its version of the baseline data, which
is also recorded.

4) A first neural network is trained to enhance
the simple data to match the general char-
acteristics of the target data. This model
learns to map the coarse behavior of the

simulator to a correct but generalized and
unrealistically clean behavior. To add addi-
tional stochastic information to the output
of this network, a second neural network is
trained to replicate environmental
contributions. The output of both neural
networks are combined to produce a high-
quality, realistic output.

Once trained, the enhanced simulator can infer
realistic signals from a simulator that is running in a
variety of “degraded” configurations. For example,
shock absorbers can wear out. Air filters can
become clogged. Subsystems can be crippled.
Families of vehicles that are built on a common
framework can be rapidly generated using the same
simulator and different training data. This ability to
quickly develop new capabilities that can be run
rapidly on commodity hardware allows
autonomous ML diagnostic systems to be trained
effectively and at scale.

2. TELEMETRY EXAMPLE

An overview of the pipeline used to create
lightweight, high-fidelity simulations is shown in
Figure 1. For this example, the signals are synthe-
sized sin waves with periods of 8 and 2 minutes.
These signals are similar to those generated by
rotating satellites (the shorter frequency) in orbit
around another object (the longer frequency). To
begin, we will generate an example signal and place
it in our telemetry storage and retrieval system [6],
shown as “Goal” in figure 1. Briefly, the steps
involved in the process are:

1) Construct, lightweight, high-speed simula-
tions

2) Generate approximate data
3) Train a neural network to map low-fidelity

to high-fidelity data
4) High-fidelity simulation or real vehicle

data source
5) Convert simulation to accurate, clean data
6) Environmental data source

Proceedings of the 2019 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Training robust anomaly detection using ML-Enhanced simulations, P. Feldman Page 3 of 8

7) Latent space data source
8) Train generative adversarial model (GAN)

to create realistic environment influence
9) Generate environmental influences

The elements are then combined to produce the
final, high-fidelity output (“Combined”).

2.1. Simulation

For this development effort, we had access to
highly sophisticated simulators for the NOAA
GOES satellites and years of data. These simulators
in many cases include the same software and often
flight hardware. They are excellent for evaluating
a particular set of options given a scenario and are
extremely limited with respect to how much faster
than real time they can operate.

ASRC Federal is in the process of developing
simple software simulators that can be run in large
numbers in the Cloud and much faster than real
time. However, the cost for fast simulators is lower
fidelity. So instead of the waveform shown as
“Goal” in Figure 1 that would take 5-10 minutes to
produce on a high-fidelity simulator, these simula-
tors can generate the highly quantized data shown
in Figure 2 (“Source”) in a few seconds.

Figure 1: Enhanced simulation pipeline

We will apply the same pipeline and techniques
to our example data that we would use for actual
telemetry.

Figure 2: Training Source and Target Time Series

Proceedings of the 2019 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Training robust anomaly detection using ML-Enhanced simulations, P. Feldman Page 4 of 8

2.2. Waveform mapping

To transform the low fidelity output of the sim-
ulator into high-fidelity waveforms while maintain-
ing the computational speed and memory footprint
that simple simulations provide requires the training
of two neural networks: The first is trained to map
the output of the simple simulators to the output
of the high-fidelity simulators or recorded activity
from the actual satellite. All networks were imple-
mented in Tensorflow version 2.1.0.

For this example, we developed a wide, shal-
low Multi-Layer Perceptron (MLP) network. The
structure of the network is shown in Figure 3. It
consists of four MLP layers (referred to in Tensor-
flow as “Dense”), with two inner, hidden layers
(“Hidden 1” and “Hidden 2”) that then feed to an
output layer. The size and number of dimensions are
shown in the “Output Shape” column. Here we can
see that these are one dimensional, with the number
of neurons indicated by the second value in the
tuple. These layers can be fed a variable number of
input vectors, as specified by the first, “None” tag.
The input and output layers are the size of the time
series. The inner layers are wider, at 3,200 neurons.
Wider networks are better at matching functions
of this type [7]. The extra depth is required to
match the multiple waveforms that the network has
to learn. The last column, “Param #”, represents the
total number of weights that the network will
manipulate during the training sequence.

Figure 3: Enhancing MLP Neural Network

The model is trained by matching a large num-
ber of “source” time series such as those in Figure

2, with a corresponding set of high-fidelity “tar-
get” time series whose beginning and end are offset
by a random amount so that all sample sizes are
the same. After training the model for 40 epochs
with a batch size of 15, we were able to produce the
enhanced waveforms shown in Figure 4. These
waveforms are produced by taking a specific time
series of simulation data as a vector (Figure 2
“Source”) and mapping the input to an enhanced
output vector (Figure 2 “Target”) of the same time.
Timing for this output vector can be taken from the
corresponding input vector element. Once trained,
an input vector is multiplied by these weights to
produce the enhanced values shown in figure 4.

Figure 4: Enhanced Simulation

It is important to note that once the model is
trained, that the inference that transforms the highly
quantized simulation to the smooth, enhanced sim-
ulation is extremely fast, particularly when using
hardware acceleration. This use of Neural Networks
is what allows us to get high-fidelity results out of
low-fidelity simulators without substantial speed or
memory penalties.

However, we are now at the point that most
high-fidelity simulation-based training systems en-
counter. The signal is too clean. An anomaly detec-
tion system trained on signals like these may not
be able to discriminate between “normal” levels of
noise and a genuine anomaly. It needs to be pro-
cessed further to resemble the original waveforms
in Figure 2.

Proceedings of the 2019 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Training robust anomaly detection using ML-Enhanced simulations, P. Feldman Page 5 of 8

2.3. Noise Training and Generation

In this approach, noise is trained indepen-
dently using Generative Adversarial Neural Net-
works (GANs)

Generative adversarial learning is a technique
where a generative network builds synthetic items
(such as images) while the discriminative network
attempts to distinguish the synthetic items from real
ones take from a training set or distribution [8].
Typically, the generative network learns to map
from a randomly generated latent space to the
distribution of interest (such as pictures of faces),
while the discriminative network tries to detect the
synthetic items. The generative network’s training
objective is to increase the error rate of the
discriminative network by “fooling” the
discriminator network through producing synthetic
items that the discriminator thinks are real. This
technique is quite capable of producing
photorealistic results. The faces seen in Figures 5,
6, and 7, are completely synthetic, and were
generated using the online StyleGAN2 generator
thispersondoesnotexist.com [9].

Figure 8: Extracted Source Noise

is reshaped to be compatible as the input layer of
the discriminator.

Figure 9: Generator construction

Figure 5

Figure 6

Figure 7

The discriminator is provided with two sources
that it must distinguish between:

1) A large number of real time series from
the database whose beginning and end are
offset by a random amount so that all
sample sizes are the same.

Noise and other stochastic environmental effects
of real telemetry are extracted using a moving
average filter [10]. This average is subtracted from
the original signal, leaving the noise that needs to
be simulated (Figure 8).

Our GAN for satellite telemetry is created by
connecting the discriminator and generator net-
works together. The generator was built as shown
in Figure 9. The 16-element latent vector is densely
connected to a layer of 64 neurons. These are then
normalized and spread to a layer of 500 neurons,
the number of samples in the time series. This layer

2) A matching number of outputs from the
generator, using the same format as the real
input.

The discriminator (Figure 10) consists of one
convolutional layer that merges input from 4 rows
of inputs using a window 20 neurons wide with a
stride of 4 neurons per step. This layer pools each
convolution based on the maximum value of the
sample. This configuration aids in finding patterns
in signals. The layers are progressively narrowed
to the final single neuron whose value determines
if the input is considered real or fake. We use a

https://thispersondoesnotexist.com/

Proceedings of the 2019 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Training robust anomaly detection using ML-Enhanced simulations, P. Feldman Page 6 of 8

binary crossentropy loss function, which compares
the summed errors across all classifications [11]
combined with the Adam adaptive optimizer [12].
This value is then compared against the passed in
values from the real and generated inputs to provide
the information needed for training.

Figure 10: Discriminator construction

The real and generated data are tagged for dis-

criminator training and evaluation. Real data has a
tag of 1.0, while generated data has a tag of 0.0.

Training is divided into the training of the
discriminator, and the training of the generator,
as shown in Figure 11. In the first section, the
discriminator as a standalone model is fed with
equal amounts of data from the real data set and the
generated data set. It then trains on the entire batch
(200 rows) of real and generated data. After this
pass, the discriminator’s weights are frozen, and the
generator is trained as part of the entire GAN
model. This allows the generator to be trained on
the backpropagating error from the discriminator.
To have the generator converge on realistic values,
the tags for this pass are reversed, and the discrim-
inator is “told” that the generated values are real. If
it determines that they are false, then a distance is
calculated that would adjust the weights towards the
correct answer. Since the discriminator is frozen,
the weights are only adjusted on the generator.

To match the qualities of this noise, our model

Figure 11: GAN Training

needed around 1,000 iterations. During this process.
the accuracy – how many of the real and fake
samples were correctly classified, and the loss –
the normalized error across all classifications were
sampled at 100-step intervals across the 1,000 iter-
ations and are shown in Figure 12. It is important
to remember when looking at this chart that the
generator and the detector are engaged in an ad-
versarial process, where the generator constantly
tries to improve its ability to fool the detector, and
the detector constantly tries to improve its ability to
identify these forgeries. As we can see in the figure,
the discriminator improves slightly faster than the
generator, which is the goal of a GAN. If the two
elements are too imbalanced, the system cannot
learn effectively.

Figure 12: Accuracy/Loss for Real and Fake Clas-
sifications

After 1,000 iterations, the generated noise is

sufficiently similar to the actual noise. The output of
the simulator enhancing neural network can then be
summed with the noise-generating neural network
to produce the final signal, shown in Figure 13,
below:

Proceedings of the 2019 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Training robust anomaly detection using ML-Enhanced simulations, P. Feldman Page 7 of 8

Figure 13: Simulator output, enhanced, with noise
added

3. DISCUSSION

The majority of this particular research occurred
during the peak of the COVID-19 NASA/NOAA
response, and we were unable to access the high-
fidelity simulators we were planning to use. As such
the simulations described in this paper are based on
simplified approximations. However, based on our
experience modeling other satellite telemetry with
small, rapidly-trained MLP networks [13] leads us
to believe that the results here can be applied to
actual telemetry data when it becomes available.

An issue that needs to be examined in more
detail is the ability for the enhancing network to
adapt low-fidelity signals to cases not covered by
real telemetry or high-fidelity simulators. Because
high-fidelity simulators are rare, they will only be
used to explore likely problem spaces or respond to
situations that occur on the actual vehicle. Unusual
edge cases that show up quickly where only the
low fidelity simulators are capable of responding
will have to be researched more deeply to see if
the data produced by the enhancing neural network
is sufficiently valid.

An example of such an unusual scenario oc-
curred in 2009, when US Airways flight 1549 struck
a flock of geese shortly after takeoff resulting in a
loss of power in both engines. With only a short
period of time to evaluate potential options, the
flight crew decided to ditch the plane in the Hudson
river, saving all passengers [14].

What would have happened if the crew had

been less experienced? Could there be a way to
evaluate options for these types of cases where time
is critical and experience limited or nonexistent? If
enhanced simulators can be built to be small and
fast enough to run at many times normal speed
and in parallel, it may be possible to automate a
response to a Mayday request by starting an always-
available cluster of simulations to evaluate potential
best options given edge-case degraded modes. In
essence, multiple reinforcement learning simula-
tions are set up with the objective function being
in the case of Flight 1549, a safe landing.

Such simulations need not be limited to satel-
lites or civil aviation. Simulation and prediction of
degraded ground vehicle behavior ranges from
situations as specific as overheating train axles [15]
to predicting traffic [16]. Combat often involves
ground vehicles operating individually or in groups
in degraded modes that cannot anticipated. An
approach to adapting quickly to these unanticipated
situations using scalable high-fidelity simulation
may make for a more adaptive combat capability
that is able to adjust to changing conditions faster
than the Adversary.

4. CONCLUSIONS

All machine learning depends on large volumes
of data. Creating a pipeline for providing synthetic
data on demand is a market that is currently worth
tens of millions of $US annually that is likely to
only increase over time. ASRC is developing
systems to provide synthetic data at scale. Synthetic
data allows organizations to be independent of data
sources with potential limitations and foreign com-
plications.

Machine learning models are useless without
data, and diverse data can make the same model
applicable in diverse contexts. Even if progress
ceased in the development of more sophisticated
models, machine learning could be effectively ap-
plied to new domains simply by training current
state-of-the-art models with new, well understood
and balanced datasets.

Proceedings of the 2019 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Training robust anomaly detection using ML-Enhanced simulations, P. Feldman Page 8 of 8

Simulation as a way of creating usable assets
is currently being done in an ad-hoc basis in the
AI/ML community. Particularly for the government
user, it is often the only secure way to generate the
amounts of data needed for the effective training
of unusual models, such as satellites. In this paper,
we have shown that it may be feasible to produce
large amounts of simulated data that can in turn be
used to train machine leaning systems to recognize
and adapt to rare and unlikely situations. Future
work will focus on increasing the range, scale, and
sophistication of these types of simulations.

REFERENCES

[1] NHTSA National Center for Statistics and

Analysis, “2018 fatal motor vehicle crashes:
Overview,” 2018.

[2] C. J. Pretorius, M. C. du Plessis, and C. B.
Cilliers, “Simulating robots without
conventional physics: A neural network
approach,” Journal of Intelligent & Robotic
Systems, vol. 71, no. 3-4, pp. 319–348, 2013.

[3] D. Zadok, T. Hirshberg, A. Biran, K.
Radinsky, and
A. Kapoor, “Explorations and lessons learned
in building an autonomous formula SAE car
from simulations,” arXiv preprint
arXiv:1905.05940, 2019.

[4] A. Bewley, J. Rigley, Y. Liu, J. Hawke, R.
Shen, V.-D. Lam, and A. Kendall, “Learning to
drive from simulation without real world
labels,” 2018.

[5] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y.
Bai, D. Hafner,
S. Bohez, and V. Vanhoucke, “Sim-to-real:
Learning agile locomotion for quadruped
robots,” 2018.

[6] Staff, “Influxdb 2.0: Complete time series
toolkit — influxdata,” [Accessed 12-June-
2020]. [Online]. Available: https://
www.influxdata.com/products/influxdb-
overview/influxdb-2-0/

[7] S. Zagoruyko and N. Komodakis, “Wide
residual networks,” 2016. [Online]. Available:

https://arxiv.org/abs/1605.07146
[8] Z. Wang, J. Chen, and S. C. Hoi, “Deep learning

for image super-resolution: A survey,” arXiv
preprint arXiv:1902.06068, 2019.

[9] T. Karras, S. Laine, and T. Aila, “A style-based
generator architecture for generative adversarial
networks,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern
Recognition, 2019, pp. 4401–4410.

[10] Staff,
“pandas.core.window.rolling.rolling.mean,”
2020. [Online]. Available:
https://pandas.pydata.org/docs/reference/api/
pandas.core.window.rolling.Rolling.mean.html

[11] R. Y. Rubinstein and D. P. Kroese, The cross-
entropy method: a unified approach to
combinatorial optimization, Monte-Carlo
simulation and machine learning. Springer
Science & Busi- ness Media, 2013.

[12] D. P. Kingma and J. Ba, “Adam: A method for
stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[13] Z. Li, “Machine learning in spacecraft ground
systems,” in 2017 6th International Conference
on Space Mission Chal- lenges for Information
Technology (SMC-IT). IEEE, 2017, pp. 76–81.

[14] Wikipedia contributors, “Us airways flight
1549 — Wikipedia, the free encyclopedia,”
2020, [accessed 12-June-2020]. [Online].
Available:
https://en.wikipedia.org/w/index.php?title=
US Airways Flight 1549&oldid=961609724

[15] X. Yang, H. Dong, J. Man, F. Chen, L. Zhen, L.
Jia, and Y. Qin, “Research on temperature
prediction for axles of rail vehicle based on
LSTM,” in International Conference on
Electrical and Information Technologies for
Rail Transportation. Springer, 2019, pp. 685–
696.

[16] M. Jiber, I. Lamouik, Y. Ali, and M. A. Sabri,
“Traffic flow prediction using neural network,”
in 2018 International Conference on Intelligent
Systems and Computer Vision (ISCV). IEEE,
2018, pp. 1–4.

https://www.influxdata.com/products/influxdb-overview/influxdb-2-0/
https://www.influxdata.com/products/influxdb-overview/influxdb-2-0/
https://www.influxdata.com/products/influxdb-overview/influxdb-2-0/
https://www.influxdata.com/products/influxdb-overview/influxdb-2-0/
https://arxiv.org/abs/1605.07146
https://pandas.pydata.org/docs/reference/api/pandas.core.window.rolling.Rolling.mean.html
https://pandas.pydata.org/docs/reference/api/pandas.core.window.rolling.Rolling.mean.html
https://pandas.pydata.org/docs/reference/api/pandas.core.window.rolling.Rolling.mean.html
https://en.wikipedia.org/w/index.php?title=US_Airways_Flight_1549&oldid=961609724
https://en.wikipedia.org/w/index.php?title=US_Airways_Flight_1549&oldid=961609724

	2020 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY
	Philip Feldman, PhD
	ABSTRACT
	1. INTRODUCTION
	2. TELEMETRY EXAMPLE
	2.1. Simulation
	2.2. Waveform mapping
	2.3. Noise Training and Generation

	3. DISCUSSION
	4. CONCLUSIONS
	REFERENCES

